STRAY DOG DETECTION IN WIRED CAMERA NETWORK
Journal: ICTACT Journal on Image and Video Processing (IJIVP) (Vol.4, No. 1)Publication Date: 2013-08-01
Authors : C. Prashanth P. T. V. Bhuvaneswari;
Page : 642-646
Keywords : Surveillance System; Stray Dog Detection; Gaussian Filter; ViBe Algorithm; SVM Classifier;
Abstract
Existing surveillance systems impose high level of security on humans but lacks attention on animals. Stray dogs could be used as an alternative to humans to carry explosive material. It is therefore imperative to ensure the detection of stray dogs for necessary corrective action. In this paper, a novel composite approach to detect the presence of stray dogs is proposed. The captured frame from the surveillance camera is initially pre-processed using Gaussian filter to remove noise. The foreground object of interest is extracted utilizing ViBe algorithm. Histogram of Oriented Gradients (HOG) algorithm is used as the shape descriptor which derives the shape and size information of the extracted foreground object. Finally, stray dogs are classified from humans using a polynomial Support Vector Machine (SVM) of order 3. The proposed composite approach is simulated in MATLAB and OpenCV. Further it is validated with real time video feeds taken from an existing surveillance system. From the results obtained, it is found that a classification accuracy of about 96% is achieved. This encourages the utilization of the proposed composite algorithm in real time surveillance systems.
Other Latest Articles
- MEASUREMENT OF RNFL THICKNESS USING OCT IMAGES FOR GLAUCOMA DETECTION
- HIGH ACCURATE LOW COMPLEX FACE DETECTION BASED ON KL TRANSFORM AND YCBCR GAUSSIAN MODEL
- REAL-TIME FACE RECOGNITION BASED ON OPTICAL FLOW AND HISTOGRAM EQUALIZATION
- FPGA IMPLEMENTATION OF RSEPD TECHNIQUE BASED IMPULSE NOISE REMOVAL
- MULTIWAVELET TRANSFORM IN COMPRESSION OF MEDICAL IMAGES
Last modified: 2013-12-05 18:17:55