ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

In silico prediction of B cell epitopes of the extracellular domain of insulin-like growth factor-1 receptor

Journal: Molecular Biology Research Communications (Vol.5, No. 4)

Publication Date:

Authors : ; ; ; ; ;

Page : 201-214

Keywords : IGF-1R; Cancer therapy; B cell epitope; Bioinformatics; Monoclonal antibody;

Source : Download Find it from : Google Scholarexternal

Abstract

The insulin-like growth factor-1 receptor (IGF-1R) is a transmembrane receptor with tyrosine kinase activity. The receptor plays a critical role in cancer. Using monoclonal antibodies (MAbs) against the IGF-1R, typically blocks ligand binding and enhances down-regulation of the cell-surface IGF-1R. Some MAbs such as cixutumumab are under clinical trial investigation. Targeting multiple distinct epitopes on IGF-1R, might be an effective strategy to inhibit IGF-1R pathway in cancer. In this study, new linear B cell epitopes for the extracellular domains of IGF-1R were predicted by in silico methods using a combination of linear B cell epitope prediction web servers such as ABCpred, Bepired, BCPREDs, Bcepred and Elliprro. Moreover, Discotope, B-pred and PEPOP web server tools were employed to predict new conformational B cell epitopes. In contrast to previously reported epitopes from extracellular region of the IGF-1R, we predicted new linear P8: (RQPQDGYLYRHNYCSK) and conformational Pc4: (HYYYAGVCVPACPPNTYRFE), Ppc6: (KMCPSTGKRENNESAPDNDT) and Ppc20: (ANILSAESSDSEFMQEPSGFI) epitopes. These epitopes are useful for further study as peptide antigens to actively immune host animals to develop new MAbs. Furthermore, the epitopes can be used in peptide-based cancer vaccines design.

Last modified: 2017-01-04 16:27:32