FEATURE EXTRACTION FOR EMG BASED PROSTHESES CONTROL
Journal: ICTACT Journal on Soft Computing (IJSC) (Vol.3, No. 2)Publication Date: 2013-01-01
Authors : R. Aishwarya M. Prabhu G. Sumithra; M. Anusiya;
Page : 472-477
Keywords : Electromyogram (EMG); Auto - Regressive (AR) Model; EMG; Histogram;
Abstract
The control of prosthetic limb would be more effective if it is based on Surface Electromyogram (SEMG) signals from remnant muscles. The analysis of SEMG signals depend on a number of factors, such as amplitude as well as time- and frequency-domain properties. Time series analysis using Auto Regressive (AR) model and Mean frequency which is tolerant to white Gaussian noise are used as feature extraction techniques. EMG Histogram is used as another feature vector that was seen to give more distinct classification. The work was done with SEMG dataset obtained from the NINAPRO DATABASE, a resource for bio robotics community. Eight classes of hand movements hand open, hand close, Wrist extension, Wrist flexion, Pointing index, Ulnar deviation, Thumbs up, Thumb opposite to little finger are taken into consideration and feature vectors are extracted. The feature vectors can be given to an artificial neural network for further classification in controlling the prosthetic arm which is not dealt in this paper.
Other Latest Articles
Last modified: 2013-12-06 13:35:53