ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Characterization of Solid Concrete Block Masonry

Journal: Mehran University Research Journal of Engineering and Technology (Vol.36, No. 1)

Publication Date:

Authors : ;

Page : 7-20

Keywords : Information Retrieval; Singular Value Decomposition; Vector Space Model; Label Induction Grouping Algorithm; Term Frequency; Inverse Document Frequency;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

In the field of data analytics grouping of like documents in textual data is a serious problem. A lot of work has been done in this field and many algorithms have purposed. One of them is a category of algorithms which firstly group the documents on the basis of similarity and then assign the meaningful labels to those groups. Description first clustering algorithm belong to the category in which the meaningful description is deduced first and then relevant documents are assigned to that description. LINGO (Label Induction Grouping Algorithm) is the algorithm of description first clustering category which is used for the automatic grouping of documents obtained from search results. It uses LSI (Latent Semantic Indexing); an IR (Information Retrieval) technique for induction of meaningful labels for clusters and VSM (Vector Space Model) for cluster content discovery. In this paper we present the LINGO while it is using LSI during cluster label induction and cluster content discovery phase. Finally, we compare results obtained from the said algorithm while it uses VSM and Latent semantic analysis during cluster content discovery phase.

Last modified: 2017-01-09 21:42:09