ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Study of Effects of Tiophanate Methyl and Carbendazim Fungicides on Paper Structure by Application of Fourier Transform Infrared Spectroscopy

Journal: Journal of Research on Archaeometry (Vol.2, No. 1)

Publication Date:

Authors : ; ; ;

Page : 55-66

Keywords : Fungicide; Thiophanate-methyl; Carbendazim; Paper; FTIR; Conservation; Restoration;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Most of fungicides for prevention of biological degradation in historic papers, firstly have been used in the other scientific and industrial fields such as material preservation, agriculture and medical science. Other scientific fields have a great importance in the conservation of historic relics especially paper relics. Therefore, Tiophanate methyl and Carbendazim fungicides were studied for application in the conservation and restoration of paper relics. Each of these materials is one of most important and applied materials in agriculture which are effective against wide range of biological factors. Conservation material should not have intensive structural effects on paper relics. Accordingly, it is required to evaluate effects of Tiophanate methyl and Carbendazim treatments on paper. Fourier Transform Infrared Spectroscopy (FTIR) is one of most important methods for structural changes of paper. For the study, laboratory samples were prepared from filter paper. Samples were treated with Tiophanate methyl (dissolved in methanol) and Carbendazim (dissolved in distilled water) in 100ppm and 200ppm concentrations by spray method. Blank and treated samples were aged according to ISIRI4706 standard method for 288 hours. After aging, structural changes have been studied by application of Fourier Transform Infrared Spectroscopy. Results showed that spectra of treated paper samples with Tiophanate methyl and Carbendazim have no structural deformation in both 100ppm and 200ppm concentrations. According to resulted spectra, it was clear that treatment materials have been added to paper but there was not any sign of paper degradation. Accelerated aging caused to production of carbonyl adsorption of the spectra in 1742 cm-1. It was indicated decay of cellulose and presence of new degradation products which results to aesthetical change of paper. Aged samples compared with unaged ones did not show structural deformation in paper due to treatment materials and there was not any sign of breakdown in cellulose linkages. The both of 100ppm and 200ppm treated samples were without damage after accelerated aging. In general, the both treatments do not affect paper structure according to results of infrared spectra.

Last modified: 2017-01-22 20:11:57