ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

TOPOLOGICAL CALCULATION OF KEY PARAMETERS OF FIBRE FOR PRODUCTION OF FOAM CONCRETE BASED ON CEMENT-FREE NANOSTRUCTURED BINDER

Journal: Nanotechnologies in Construction: A Scientific Internet-Journal (Vol.8, No. 4)

Publication Date:

Authors : ; ; ;

Page : 73-88

Keywords : topology; discrete fibres; fibre critical length; foam concrete; nanostructured binder.;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Fiber reinforcement is the process of introduction of fibers of different origins into binding system to enhance strength, stress-strain behavior of products and structures. Maximal effect of reinforcing process is possible when optimal parameters (length and consumption of fibre) are determined. Moreover one need to consider particle-size composition and hardening process of binding system. In this paper the critical length of natural and sinthesized fibres as well as minimally required content in cellular systems is calculated with the mathematical apparatus of structural topology. As an example the foam concrete based on cement-free nanostructured binder with basalt fibre and microreinforcing constructional polymeric fibre is studied. Fiber diameter, refined with microstructure analysis, accomplished by SEM-microscopy and experimentally determined packing density in loose and compact state are applied as input parameters. Measurement of the fibre topological characteristics with acceptable is accomplished according to material porosity and pore size. So the minimal effec- 74 http://nanobuild.ru 2016 ? Vol. 8 ? no. 4 / 2016 ? Том 8 ? № 4 THE RESULTS OF THE SPECIALISTS' AND SCIENTISTS' RESEARCHES References: 1. Lesovik R.V., Аgeeva M.S., Pukharenko Yu.V., Lesovik G.A., Popov D.Yu. Textile fiber concrete of the basis of the composite binding materials. Proceedings of 19-te Internationale Baustofftagung Ibausil 2015. 2015, pp. 1167?1171. 2. Kluev S.V., Kluev A.V., Lesovik R.V. Optimalnoe proektirovanie vysokokachestvennogo fibrobetona [Optimal designing of high-quality fiber-reinforced concrete]. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shuhova [Bulletin of the Belgorod State Technological University named after V.G. Shoukhov]. 2015, № 6, pp. 119?121. (In Russian). 3. Lesovik R.V., Klyuyev S.V., Klyuyev A.V., Netrebenko A.V., Yerofeyev V.T., Durachenko A.V. Fine-grain concrete reinforced by polypropylene fiber. Research Journal of Applied Sciences. 2015, Vol. 10, № 10, pp. 624?628. Machine-readable information on CC-licenses (HTML-code) in metadata of the paper Topological calculation of key parameters of fibre for production of foam concrete based on cement-free nanostructured binder by Kharkhardin A.N., Sivalneva M.N., Strokova V.V. is licensed under a Creative Commons Attribution 4.0 International License.Based on a work at http://nanobuild.ru/en_EN/nanobuild-4-2016/.Permissions beyond the scope of this license may be available at s-nsm@ mail.ru. DOI: dx.doi.org/10.15828/2075-8545-2016-8-4-73-88 tive fibre length taking into account homogeneous distribution in bulk of composite matrix is less of 1 mm; minimal fibre consumption is 0,2?0,5 (by wt. %). Irrational optimization leads to unreasonable cost growth of final materials as well as formation of balling inclusions that negatively affects on final performance of composite.

Last modified: 2017-01-24 00:37:04