1D nonnegative Schrodinger operators with point interactions
Journal: Matematychni Studii (Vol.39, No. 2)Publication Date: 2013-04-01
Authors : Kovalev Yu. G.;
Page : 150-163
Keywords : point interaction; Riesz basis; boundary triplet; the Friedrichs extension; the Krein extension;
Abstract
Let $Y$ be an infinite discrete set of points in $mathbb R $, satisfying the condition $inf{|y-y'|,; y,y'in Y, y'ne y}>0.$ In the paper we prove that the systems ${delta(x-y)}_{yin Y}, ;{delta'(x-y)}_{yin Y}, {delta(x-y),;delta'(x-y)}_{yin Y}$ form Riesz bases in the corresponding closed linear spans in the Sobolev spaces $W_2^{-1}(mathbb R )$ and $W_2^{-2}(mathbb R )$. As an application, we prove the transversalness of the Friedrichs and Kreui n nonnegative selfadjoint extensions of the nonnegative symmetric operators $A_0$, $A'$, and $H_0$ defined as restrictions of the operator $A =-frac{ d^2}{ dx^2},$ $mathop{rm dom} (A)=W^2_2(mathbb R )$ to the linear manifolds $mathop{rm dom} (A_0)=left{ fin W_2^2(mathbb{R})colon f(y)=0,; yin Y right}$, $mathop{rm dom} (A')={ gin W_2^2(mathbb{R})colon g'(y)=0,; yin Y },$ and $mathop{rm dom} (H_0)=left{fin W_2^2(mathbb{R})colon f(y)=0,;f'(y)=0,; yin Y right}$, respectively. Using the divergence forms, the basic nonnegative boundary triplets for $A^*_0$, $A'^*$, and $H^*_0$ are constructed.
Other Latest Articles
- Description of Pompeiu sets in terms of approximations of their indicator functions
- Wiman's type inequality for some double power series
- Topological and ditopological unosemigroups
- Elements of high order in Artin-Shreier extensions of finite fields(in Ukrainian)
- On estimates of a fractional counterpart of the logarithmic derivative of a meromorphic function
Last modified: 2014-01-13 20:09:36