ON THE CONVERGENCE OF EIGENVALUES AND EIGENFUNCTIONS OF THE LAPLACIAN WITH WENTZELL-ROBIN BOUNDARY CONDITION
Journal: International Journal of Applied Mathematics & Statistical Sciences (IJAMSS) (Vol.3, No. 2)Publication Date: 2014-03-31
Authors : TAWIK MASROUR;
Page : 11-20
Keywords : Laplacien; Went Zell-Robin Boundary Conditions;
Abstract
In this paper we are interested in the problem of convergence of the eigenvalues and eigenfunctions of the Laplacian with Went zell-Robin boundary condition to the eigenvalues and eigenfunctions of the Laplacien with Dirichlet boundary condition when the Robin parameter tends to infinity. We show in particular that the convergence of eigenfunctions is better than the usual internal convergence in and boundary convergence in .
Other Latest Articles
- A NEW HORIZON FOR MULTIPLE ATTRIBUTE GROUP DECISION MAKING PROBLEMS WITH VAGUE SETS
- Reuniones, dispersiones. Notas sobre ideas literarias de Tomás Segovia
- Usos dos oráculos délficos em Plutarco
- Concha Urquiza y Gloria Riestra: Del Dios hecho hombre al Dios trino. Tradición cristológica en la visión de dos poetas mexicanas modernas
- Aspectos de la religión en la novela erótica griega
Last modified: 2014-03-11 21:37:23