Residual oil saturation and displacement factor prediction methodology based on geophysical studies data to evaluate efficiency of nanotechnologies application
Journal: Nanotechnologies in Construction: A Scientific Internet-Journal (Vol.9, No. 5)Publication Date: 2017-10-24
Authors : Akhmetov R.T. Andreev A.V. Mukhametshin V.V.;
Page : 116-133
Keywords : residual oil saturation; displacement factor; wettability; nanotechnologies; technological effect.;
Abstract
The displacement factor is important information when it is necessary to evaluate oil production dynamics and the prospects of development intensification and oil recovery enhancing methods, including nanotechnological methods. However, up to date there are no reliable oil-field methods to predict this parameter in situ well, under conditions of the natural reservoirs occurrence, and that causes this important parameter not to be taken into account when the impact on the bottomhole formation zone effectiveness is evaluated. In this paper the authors propose a methodology for prediction of the displacement factor that employs field geophysics data and that makes it possible to estimate this parameter in each geological cross-section both in the section and in the deposit area. The method is based on the use of two complex parameters characterizing the filtration properties and the productive formation hydrophilicity (hydrophobicity) degree. The both complex parameters are easily determined by the standard well logging complex data At present the technologies that use solutions containing SiO2 nanoparticles are becoming more and more popular in oil production intensification and enhanced oil recovery process. The proposed calculation method for residual oil saturation and displacement coefficient can be used to obtain the reference values of the corresponding parameters when the efficiency of oil production intensification and enhanced oil recovery methods including nanotechnological ones is evaluated.
Other Latest Articles
- Research of condition metal in welded joint by deformation and corrosion parameters relief on the surface
- Investigation of sol-gel transition by rheological methods. Part II. Experimental methods
- Research of the structure of cement-sand solutions exposed to the superhigh-frequency electromagnetic radiation
- Experimental research of stability of emulsion systems with SIO2 nanoparticles
- The use of nanoadditives in polyvinylchloride compositions in construction
Last modified: 2017-12-01 01:47:29