Direct Transesterification of Microalga Botryococcus braunii Biomass for Biodiesel Production
Journal: Emergent Life Sciences Research (Vol.2, No. 2)Publication Date: 2016-12-31
Authors : Rameshprabu Ramaraj Rungthip Kawaree Yuwalee Unpaprom;
Page : 1-7
Keywords : biodiesel; biomass; direct transesterification; microalgae; red tilapia effluent medium;
Abstract
Microalgae biodiesel are reported to be better than fossil fuels in terms of life-cycle energy performance. Green alga, Botryococcus braunii symbolizes one of the most favorable resources of biodiesel due to relatively high lipid content. The present study focused on the cultivation of Botryococcus braunii with the fed-batch in 4 L labscale continuously stirred tank reactors (CSTRs) through inexpensive red Nile tilapia effluent medium (RNTEM), biomass growth, protein, carbohydrate, lipid, hydrocarbon production and fatty acids profiles. Additionally, in this study we have evaluated the feasibility of biodiesel production directly from B. braunii biomass at laboratory scale achieved through direct transesterification process. B. braunii growth confirmed the highest biomass yield (8.57 g L −1) and 35.32% hydrocarbon content was observed. Further, 47.59% lipids, 16.39% proteins and 38.21% carbohydrates were observed under laboratory conditions. Fatty acid methyl esters (FAME) synthesis by direct conversion of B. braunii biomass was carried out using sulfuric acid as a catalyst and methanol as solvent. The experimental results obtained in the present study proved that the production of B. braunii by RNTEM is potentially feasible.
Other Latest Articles
- Effects of Brassinosteroid, Naphthalene Acetic Acid and Gibberellic Acid on In vitro Pollen Germination of Bisexual and Functional Male Flowers of Pomegranate Cultivars
- Determination of Some Physical and Chemical Properties of Mevlana Grape Variety Grown Soils in Vineyards of Alaşehir District in Manisa
Last modified: 2018-01-31 17:36:36