On the cyclic Homology of multiplier Hopf algebras
Journal: Sahand Communications in Mathematical Analysis (Vol.9, No. 1)Publication Date: 2018-01-01
Authors : Ghorbanali Haghighatdoost; Hami Abbasi Makrani; Rasoul Mahjoubi;
Page : 113-128
Keywords : Multiplier Hopf algebra; Cyclic homology; Cyclic module; Paracyclic module; $H-$comodule; $H-$module;
Abstract
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a paracyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ and then prove the existence of a cyclic structure associated to this triple.
Other Latest Articles
- Non-Archimedean fuzzy metric spaces and Best proximity point theorems
- On the stability of the Pexiderized cubic functional equation in multi-normed spaces
- Density near zero
- On an atomic decomposition in Banach spaces
- Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions
Last modified: 2018-02-03 20:15:59