Two extensions of the Dai-Liao method with sufficient descent property based on a penalization scheme
Journal: Bulletin of Computational Applied Mathematics (Bull CompAMa) (Vol.4, No. 1)Publication Date: 2016-06-30
Authors : Masoud Fatemi; Saman Babaie-Kafaki;
Page : 7-19
Keywords : Unconstrained optimization; conjugate gradient method; sufficient descent property; penalty method; line search;
Abstract
To achieve the good features of the linear conjugate gradient algorithm in a recent extension of the Dai-Liao method, two adaptive choices for parameter of the extended method are proposed based on a penalization approach. It is shown that the suggested parameters guarantee the sufficient descent property independent to the line search and the objective function convexity. Furthermore, they ensure the global convergence of the related algorithm for uniformly convex objective functions. Using a set of unconstrained optimization test problems from the CUTEr library, effectiveness of the suggested choices are numerically compared with two other recently proposed adaptive choices. Results of comparisons show that one of the proposed choices is computationally promising in the sense of the Dolan-Moré performance profile.
Other Latest Articles
- A CASE REPORT OF URETERIC CALCULUS TREATED WITH HOMOEOPATHIC MEDICINE, HYDRANGEA ARBORESCENS 30
- A STUDY OF THE FACTORS AFFECTING THE GROWING PRESENCE OF GIRLS IN IRANIAN UNIVERSITIES FOR CONTINUING THEIR HIGHER EDUCATION: A REVIEW
- Herpesviruses in Patients With Systemic Lupus Erythematosus (Literature Review and Clinical Cases Description)
- The content of some vasoactive humoral-metabolic factors in patients with cirrhosis and their participation in pathogenesis of comorbid syntropical damages of cardiovascular system
- Influence of Vitamin D Deficiency on the Rheumatoid Arthritis Activity and the Ways of Its Corrections
Last modified: 2018-08-05 10:16:34