Evaluation of empirical attributes for credit risk forecasting from numerical data
Journal: Investment Management and Financial Innovations (Vol.14, No. 1)Publication Date: 2017-05-16
Authors : Augustinos Dimitras; Stelios Papadakis; Alexandros Garefalakis;
Page : 9-18
Keywords : computational intelligence; credit risk; management commentary; Management Commentary Index; quantitative and qualitative criteria;
Abstract
In this research, the authors proposed a new method to evaluate borrowers' credit risk and quality of financial statements information provided. They use qualitative and quantitative criteria to measure the quality and the reliability of its credit customers. Under this statement, the authors evaluate 35 features that are empirically utilized for forecasting the borrowers' credit behavior of a Greek Bank. These features are initially selected according to universally accepted criteria. A set of historical data was collected and an extensive data analysis is performed by using non parametric models. Our analysis revealed that building simplified model by using only three out of the thirty five initially selected features one can achieve the same or slightly better forecasting accuracy when compared to the one achieved by the model uses all the initial features. Also, experimentally verified claim that universally accepted criteria can't be globally used to achieve optimal results is discussed.
Other Latest Articles
- Human resource accounting in the system of value-based business management
- Testing of weak form of efficient market hypothesis: evidence from the Bahrain Bourse
- Relating corporate social investment with financial performance
- Market efficiency and technical analysis during different market phases: further evidence from Malaysia
- Risk perception and psychological behavior of investors in emerging market: Indonesian Stock Exchange
Last modified: 2018-03-14 22:45:45