ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

The effect of carbon content on mechanical properties, failure and corrosion resistance of deposited chromium metal

Journal: Reporter of the Priazovskyi State Technical University. Section: Technical sciences (Vol.33, No. 1)

Publication Date:

Authors : ;

Page : 68-72

Keywords : deposited metal; continuous casting machine rollers; rolling mill rolls; chromium and carbon content; chromium critical concentration; hardness; strength; specific work of failure;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

It has been shown that if choosing a metal composition for surfacing rolls and rollers of continuous casting machines, both the carbon impact on the mechanical and functional properties and the critical values of the chromium concentration, which determine the corrosion resistance of the metal with regard to electrochemical corrosion theory, should be considered as well. The paper studied the effect of chromium and carbon steel the X5-X12 type on the structure, technological strength, mechanical properties, fracturing resistance and corrosion resistance of the weld metal. The composition of chromium tool steels (deposited metal) (X5-used for the rolls of hot rolling mills) and (X12-used for continuous casting machines rollers) correspond to these values. The impact of carbon on the properties of the deposited metal containing chromium was considered by comparing the data for both types of the deposited metal. It was found that for both types of the deposited metal (X5 and X12), the limiting value of the carbon content, providing an optimal combination of strength, ductility, failure resistance is the same. If the carbon content is more than the limiting value – (0,25%) the technological strength and failure resistance of the deposited metal significantly reduce. With increasing carbon content from 0,18 to 0,25% the martensite structure has a mixed morphology – lath and plate. The strength and toughness of the deposited metal grow. Of particular interest is simultaneous increase in the specific work of failure resulted from crack inhibition at the boundary with far less solid and more ductile ferrite. As for the 5% chromium metal, the X12 type composition with 0,25% C, is borderline. With a further increase in the carbon content of the metal both ductility and failure resistance sharply decrease and with 0,40% C the growth rate of fatigue crack increases by almost 1,5 times

Last modified: 2018-04-11 19:20:25