ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Comparative Investigation in a Turbine Blade Passage Flows with Several Different Turbulence Models

Journal: International Journal of Advanced Design and Manufacturing Technology (Vol.4, No. 4)

Publication Date:

Authors : ;

Page : 39-45

Keywords : Finite Volume; k-ε Model; k-ω SST Model; Turbulence Model; Spalart-Allmaras Model; Steam Turbine;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

In the present work a two dimensional numerical investigation of steam flows in a turbine blade passage is performed. A finite volume approach has been used and the pressure?velocity coupling is resolved using the SIMPLE algorithm. The purpose of this paper is to find that one of the used turbulent models is better for this kind of studies. A structured mesh arrangement with boundary layer mesh was adopted to map the flow domain in the blade passage. Pressure profiles around the blades for all models results are compared with the experimental data and good agreement is observed. The three models results of k?ε turbulence models (standard, Realizable and RNG) have compared with Spalart-Allmaras and k-ω SST models. Based on the results obtained, that all of these models can simulate the flow with reasonable result but the Spalart-Allmaras model and REALIZABLE k-ε model is better than other models with significant in shock capturing. Based on result, Spalart-Allmaras and k-ω SST models showed a larger boundary layer on suction trailing edge than k- ε models family. Although using REALIZABLE k-ε model leading to savings in computational cost and time.

Last modified: 2013-03-04 16:59:50