ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Big Data Research Trend and Forecast (2005-2015): An Informetrics Perspective

Journal: THE INTERNATIONAL JOURNAL OF BUSINESS MANAGEMENT AND TECHNOLOGY (Vol.1, No. 1)

Publication Date:

Authors : ;

Page : 43-50-50

Keywords : Big Data; Informetrics; Research Trend; bibliometrics;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Big data is prevalent in our daily life. Not surprisingly, big data becomes a hot topic discussedby commercial worlds, media, magazines, general publics and elsewhere. From academic point of view, isit a research area of potential worth being explored? Or it is just another hype? Are there only computer orIS related scholars suitable for big data research due to its nature? Or scholars from other research areas are alsosuitable for this subject? This study aims to answer these questions through the use of informetricsapproach and data source form the SSCI Journal database, leveraging informetric‟s robust natures ofquantitative power of analyze information in any form onto the data source of representativeness. This research shows that big data research is at its growth phase with an exponential growth patternsince 2012 and with great potential for years to come. And perhaps surprisingly, computer or IS relateddisciplinesare not on the top 5 research areas fromthis research results. In fact, the top five research disciplinesare more diversified then expected: business economics (#1), Government Law (#2), InformationScience/ Library Science (#3), Social Science (#4) and Computer Science (#5). Scholars from the USuniversities are the most productive in this subject while Asian countries, including Taiwan, are alsovisible. Besides, this study also identifies that big data publications from SSCI journal database during2005-2015 do fit Lotka‟s law. This study contributes tounderstand the current big data research trends and also show the ways toresearchers who are interested to conduct future research in big data regardless of their research backgrounds.

Last modified: 2018-10-06 13:43:15