ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Strength and thermo-physical properties of concrete with polypropylene fiber under standard temperature regimes

Journal: Pozharovzryvobezopastnost/Fire and Explosion Safety (Vol.26, No. 5)

Publication Date:

Authors : ;

Page : 37-44

Keywords : ;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

The paper discusses the problems of protection of reinforced concrete tunnel structures from brittle (explosive) destruction of concrete tubbing lining of the tunnel. The relevance of the research is attributed to increasing pace of construction of deep-level tunnels. Fires in such facilities could be catastrophic, often resulting in massive loss of life and great material losses, and their suppression requires involvement of considerable forces and assets. During the construction and operation of road and subway tunnels, the protecting structures - reinforced concrete lining blocks have a higher moisture content, which in the event of fire in the early stages can lead to brittle failure of concrete tubing and the premature loss of their load-bearing capacity. To reduce the effects of brittle fracture of concrete in the protective layer of concrete structures anti-spall mesh is installed, or fire retardant coating is used which reduces the intensity of heating of concrete during fire. However, recent studies have shown that the most effective way of protecting against brittle fracture of concrete from the point of view of labor and material cost is the use of additives in the concrete mixture in the form of polypropylene fibers. Earlier, experiments were carried out in VNIIPO to determine the actual limits of fire resistance of tunnel tubing and the influence of polypropylene fibers additives in concrete mix on the likelihood of brittle fracture of concrete. However it seems impossible to assess the fire resistance of similar structures using numerical methods due to the lack of baseline data on the strength and thermo-physical properties of concrete with polypropylene fibers. To achieve this goal, studies were conducted of concrete strength under axial compression with the addition of polypropylene fibers in the amount of 1 kg/m3 and experimental data of thermal characteristics of fiber-reinforced concrete at high temperatures were obtained. The paper presents the results of experiments on the samples of fiber concrete under axial compression when exposed to temperature in the range 20-800 °C. Graphics show the process of the strength change of concrete with and without additives during heating. Analytical dependencies for determination of strength of concrete under compression were obtained with two types of polypropylene fibers at high temperatures.A comparison of the strength properties of the investigated concrete mixtures was carried out. It was established experimentally that when using the polypropylene fibers, the strength characteristics of fiber-concrete are reduced on average by 16 %, compared to the concrete without fiber additives, both at normal and high temperatures. As a result of processing of the experimental data by regression analysis the analytical dependencies were obtained for determination of strength characteristics of concrete under axial compression with the addition of domestic and imported fibers when exposed to high temperatures. Experiments to determine the thermal properties of concrete with the addition of polypropylene fibers, were conducted during one-sided heating of board samples on the temperature regime of “standard fire”. In the presence of experimental data, by solving the inverse heat conduction problem using the previously developed computer program, the thermophysical characteristics (thermal conductivity and heat capacity) of fiber-reinforced concrete at elevated temperatures were defined. With increasing temperature, the thermal conductivity decrease is more intensive in concrete with added polypropylene fibers than that of concrete without additives. At the same time, the addition of fiber does not affect the intensity of increase of the heat capacity of concrete.

Last modified: 2018-10-17 22:02:58