ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Correction Equations for Wet Combustion Carbon Determination at Different Depths and Management Systems of a Rhodic Hapludox

Journal: Journal of Agriculture and Crops (Vol.1, No. 6)

Publication Date:

Authors : ; ; ; ; ;

Page : 75-82

Keywords : Dry combustion; Walkley-Black; Correction factor.;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Measurement of soil carbon is the focus of attention of present and future international conventions and agreements, related to global climate change. Past inventories and current carbon stock inventories involve different analytical methods, and methodological biases and uncertainties should be reduced to develop reliable estimates of the effects of land uses changes on total organic carbon. Furthermore, the carbon-equivalent is highly variable, and there is the need of using a specific correction factor for each location, resulting from the combination of land use, textural gradients, and sampling depth. In this context, the aims of this study were creating correction equations for the determinations through wet combustion (Walkley-Black- WB) for a Rhodic Hapludox based on the determinations made through dry combustion (CS) at different depths and management systems. The experimental design was 4 x 5 factorial with 3 replications. Treatments were: Conventional Tillage (CT); Minimum Tillage (MT); No-till with chisel plowing (NTC) and No-Till (NT). The collection depths were: 0-2.5; 2.5-5; 5-10; 10-20 and 20-40 cm. The measured carbon equivalent values ranged from 1.06 to 1.18 and were dependent on land use and soil depth. Rhodic Hapludox under different management presented the following order of carbon equivalent values: NTC < CT < NT < MT. The carbon equivalent values increased with depth. The high ratio between C-WB and C-CS (R2= 0.75, p= 0.0001) justifies the use of correction factors.

Last modified: 2018-11-05 14:17:11