Using Models of Collective Neural Networks for Classification of the Input Data Applying Simple Voting
Journal: The Journal of Social Sciences Research (Vol.4, No. 5)Publication Date: 2018-12-15
Authors : Askar N. Mustafin; Alexey S. Katasev; Amir M. Akhmetvaleev; Dmitriy G. Petrosyants;
Page : 333-339
Keywords : Neural network model; Neural network; Collective of neural networks; 0.632-bootstrap; Simple voting method; Classification.;
Abstract
This paper deals with the use of neural networks in binary classification problems based on the simple voting method. It specifies that the accuracy of the neural network classification depends both on the choice of the network architecture and on the partitioning of data into training and test sets. It is noted that the process of building a neural network model is probabilistic in nature. To eliminate this drawback and improve the accuracy of classification, the need to combine several models in the form of a collective of neural networks is actualized. To build such a model, it is proposed to use the 0.632-bootstrap method. To aggregate individual solutions formed at the output of each neural network, it is proposed to use a single-choice simple voting. The choice of the model structure in the form of a single-layer Perceptron is justified, and its mathematical model is presented. Using the evaluation data of the functional state of a drunk human as an example, the results of an experimental assessment of the bootstrap error and the accuracy of the neural network model are presented. It is concluded that it is possible to achieve a higher accuracy of classification based on the neural network model when aggregating the results of all bootstrap models using the simple voting method. The accuracy of the constructed model is compared with the accuracy of other classification models. The accuracy of the constructed model was 96.7%, which on average exceeded the accuracy of other classification models by 6.6%. Thus, the neural network collective model is an effective tool for classifying input data using the simple voting method.
Other Latest Articles
- The Significance of the Resource Intensity of the Regional Economy the Development of the Oil and Gas Chemical Complex
- The Impact of the Socio-Economic Situation in the Region on the Quality of Competition Policy
- The Corporate Governance and Interdependence of Investment and Financing Decisions of Non-Financial Firms in Pakistan
- University Integration Management Algorithm in the National Innovation System
- The Analysis of World Trends of Territorial Branding Development
Last modified: 2019-02-02 19:38:40