ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Evaluation of open pit slope stability using various slope angles and element types

Journal: Mining of Mineral Deposits (Vol.12, No. 2)

Publication Date:

Authors : ;

Page : 45-57

Keywords : slope stability; open pit mine; critical strength reduction factor (CSRF); open pit excavation sequence; finite-element method (FEM); numerical modelling; strength criterion;

Source : Downloadexternal Find it from : Google Scholarexternal


Purpose. The objective of this study is to demonstrate a method to select the optimal slope angle related to three principal factors: safety, productivity and mining costs. Also, it aims to investigate the accuracy of numerical analysis using different element types and order. Methods. Series of two-dimensional elasto-plastic finite-element models has been constructed at various slope angles (e.g. 40°, 45°, 50°, 55°, 60°, 65°, and 70°) and different element types (e.g. 3-noded triangle (T3), 6-noded triangle (T6), 4-noded quadrilateral (Q4) and 8-noded quadrilateral (Q8).The results are presented, discussed and compared at various slope angles and element types in terms of critical strength reduction factor (CSRF) or its equivalent factor of safety (FOS), total rock slope displacement, mine production and mining costs. Findings. The results reveal that, the mine productivity increases as slope angle increases, however, slope stability deteriorates. Alternatively, the factor of safety (FOS) decreases as slope angle becomes steeper (e.g. minimum factor of safety is obtained at highest steep angle of 70°). Despite of the increasing in computation time, the analysis shows that, the accuracy of the modelling increases when adopting high-order element types (e.g. 8-noded quadrilateral and 6-noded triangle elements). Originality. This study provides a methodology for the application of the numerical modelling methods on open pit mine. As a result, the mine planners will be able to know ahead of time the optimal slope angle with respect to safety, production and mining costs. Practical implications. This study sheds light on the usefulness of adopting numerical modelling analysis in the feasibility studies to determine and compare mining costs against safety and slope angle.

Last modified: 2019-02-02 23:33:13