ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Synthesis of γ-Fe2O3 Nanoparticles and Catalytic activity of Azide-Alkyne Cycloaddition Reactions

Journal: Asian Journal of Nanoscience and Materials (Vol.1, No. 4)

Publication Date:

Authors : ; ; ; ; ; ; ;

Page : 172-182

Keywords : ;

Source : Download Find it from : Google Scholarexternal

Abstract

Iron nanoparticles (NPs), due to their interesting properties, low cost preparation and many potential applications in ferrofluids, magneto-optical, catalysis, drug delivery systems, magnetic resonance imaging, and biology, have attracted a lot of interest during recent years. In this research, γFe2O3NPs were synthesized through simple co-precipitation method followed by thermal treatment at 300 °C for 2 hours. In our synthesis route, FeCl3 and FeCl2 were employed as precursors to synthesize γ-Fe2O3NPs. This approach is very effective and economical. The γ-Fe2O3NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM),and vibrating sample magnetometer (VSM). The XRD and FT-IR results indicated the formation of γ-Fe2O3NPs. The SEM and TEM images contributed to the analysis of particle size and revealed that the γ-Fe2O3 particle size of the nanopowders ranged from 11 and 13 nm. Magnetic property was measured by VSM at room temperature and hysteresis loops exhibited that the γ-Fe2O3 NPs were super-paramagnetic. The synthesized γ-Fe2O3NPs were applied in order to synthesize mono-triazoles within one molecule using azide-alkyne cycloaddition reactions. KEYWORDS: γ-Fe2O3 Nanoparticles

Last modified: 2019-06-08 04:02:12