ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Assessment of influence of disperse filler polarity on structure and water absorption of epoxy compositions

Journal: Вестник МГСУ / Vestnik MGSU (Vol.14, No. 6)

Publication Date:

Authors : ; ; ; ;

Page : 690-690

Keywords : graphite; disperse filler; IR-spectroscopy; composite material; marshallite; epoxy resin; water resistance;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Introduction. Composite materials on the basis of epoxy resin find wide application as adhesives, coatings and structural materials whose properties it is possible to regulate by introduction of various additives including disperse fillers in the epoxy binder. Positively influencing properties of epoxy materials, the disperse fillers can reduce water resistance of the materials. This work is aimed at studying of influence of polar and nonpolar disperse fillers on structure and water absorption of the epoxy materials. Materials and methods. When obtaining composite materials, the following components were used: ED-20 epoxy resin (state standard GOST 10587-84), dibutylphthalate (state standard GOST 8728-88) plasticizer, polyethylenepolyamine (specification TU 2413-357-00203447-99) hardener, marshallite (state standard GOST 9077-82) and graphite (state standard GOST 17022-81) disperse fillers. The structure of samples was investigated by means of IR-spectroscopy method. Water absorption was determined in boiling water using the standard gravimetric method (state standard GOST 4650-2014 (ISO 62:2008)) and evaluated by sample mass variation within 120 days. Results. As a result of the conducted researches, the optimum content of the marshallite and graphite fillers in epoxy materials is established. When mass filler-to-binder ratio is equal to 15/85, water absorption of the materials is minimum. The IR-spectroscopy method showed that introduction of the marshallite polar filler in the epoxy binder promotes ordering of material structure due to formation of hydrogen bond between reactive groups of the filler and resin. Localizing in amorphous areas, particles of the graphite nonpolar filler lead to weakening of the hydrogen-bond system. Interaction of marshallite-filled samples with water is accomplished at the swelling mode, with equilibrium degree of swelling about 1 %. The mechanism of interaction of graphite-filled samples with water includes the alternating stages of dissolution and swelling, which are more expressed as compared with check samples. Conclusions. Water resistance of epoxy materials filled with disperse fillers is defined by a microstructure of the cured resin. Introduction of the marshallite polar filler in the epoxy binder leads to ordering of material structure that results in increasing of water absorption. Introduction of the graphite nonpolar filler in the epoxy binder leads to disordering of material structure that results in reducing of water absorption. Lower value of water absorption of graphite-filled epoxy material is connected with partial dissolution of the sample. Using nonpolar fillers is inexpedient for epoxy materials contacting with water.

Last modified: 2019-08-12 19:06:21