ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

A Hybrid Apporach of Classification Techniques for Predicting Diabetes using Feature Selection

Journal: International Journal of Trend in Scientific Research and Development (Vol.3, No. 5)

Publication Date:

Authors : ;

Page : 2506-2510

Keywords : Data Miining; Data Mining; Diabetes; Classification; SVM; J48; Naïve Bayes;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Diabetes is predicted by classification technique. The data mining tool WEKA has been developed for implementing Support Vector Machine SVM classifier. Proposed work is framed with a specific end goal to improve the execution of models. For improving the classification accuracy Support Vector Machine is combined with Feature Selection and percentage Split. Trial results demonstrated a serious change over in the current Support Vector Machine classifier. This approach enhances the classification accuracy and reduces computational time. S. Jaya Mala "A Hybrid Apporach of Classification Techniques for Predicting Diabetes using Feature Selection" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-5 , August 2019, URL: https://www.ijtsrd.com/papers/ijtsrd27991.pdfPaper URL: https://www.ijtsrd.com/computer-science/data-miining/27991/a-hybrid-apporach-of-classification-techniques-for-predicting-diabetes-using-feature-selection/s-jaya-mala

Last modified: 2019-09-10 16:30:41