Adaptive Semantic Indexing of Documents for Locating Relevant Information in P2P Networks
Journal: The International Arab Journal of Information Technology (Vol.12, No. 5)Publication Date: 2015-09-01
Authors : Anupriya Elumalai; Sriman Narayana;
Page : 473-480
Keywords : IR; semantic indexing; P2P systems; chord; concept clustering; lexical ontology; wordnet; semantic overlay network;
Abstract
Locating relevant information in Peer-to-Peer (P2P) system is a challenging problem. Conventional approaches use flooding to locate the content. It is no longer applicable due to massive information available upfront in the P2P systems. Sometime, it may not be even possible to return small percent of relevant content for a search if it is an unpopular content. In this paper, we present adaptive semantic P2P content indexed system. Content indices are generated using topical semantics of
documents derived using Wordnet ontology. Similarities between document hierarchies are computed using information theoretic approach. It enables locating and retrieval of contents with minimum document movement, search space and nodes to be searched. Results illustrate that our work can achieve results better than Content Addressable Network (CAN) semantic P2P Information Retrieval (IR) system. Contrary to CAN semantic P2P IR system, we have used content aware and node aware bootstrapping instead of random bootstrapping of search process
Other Latest Articles
- Kernel Logistic Regression Algorithm for LargeScale Data Classification
- Optimum Threshold Parameter Estimation of Bidimensional Empirical Mode Decomposition Using Fisher Discriminant Analysis for Speckle Noise Reduction
- A Vision Approach for Expiry Date Recognition using Stretched Gabor Features
- Automated Retinal Vessel Segmentation using Entropic Thresholding Based Spatial Correlation Histogram of Gray Level Images
- AES Based Multimodal Biometric Authentication using Cryptographic Level Fusion with Fingerprint and Finger Knuckle Print
Last modified: 2019-11-17 16:22:32