ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Redistribution of Nickel Ions Embedded within Indium Phosphide Via Low Energy Dual Ion Implantations

Journal: Journal of Nuclear Physics, Material Sciences, Radiation and Applications (Vol.6, No. 1)

Publication Date:

Authors : ;

Page : 9-15

Keywords : InP based optoelectronics devices; Ni nanoclusters; Dual Ion Implantations; Rutherford Backscattering; X-ray Photoelectron Spectroscopy;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Transition-metal doped Indium Phosphide (InP) has been studied over several decades for utilization in optoelectronics applications. Recently, interesting magnetic properties have been reported for metal clusters formed at different depths surrounded by a high quality InP lattice. In this work, we have reported accumulation of Ni atoms at various depths in InP via implantation of Ni- followed by H– and subsequently thermal annealing. Prior to the ion implantations, the ion implant depth profile was simulated using an ion-solid interaction code SDTrimSP, incorporating dynamic changes in the target matrix during ion implantation. Initially, 50 keV Ni- ions are implanted with a fluence of 2 × 1015 atoms cm-2, with a simulated peak deposition profile approximately 42 nm from the surface. 50 keV H- ions are then implanted with a fluence of 1.5 × 1016 atoms cm-2. The simulation result indicates that the H- creates damages with a peak defect center ~400 nm below the sample surface. The sample has been annealed at 50°C in an Ar rich environment for approximately 1hr. During the annealing, H vacates the lattice, and the formed nano-cavities act as trapping sites and a gettering effect for Ni diffusion into the substrate. The distribution of Ni atoms in InP samples are estimated by utilizing Rutherford Backscattering Spectrometry and X-ray Photoelectron Spectroscopy based depth profiling while sputtering the sample with Ar-ion beams. In the sample annealed after H implantation, the Ni was found to migrate to deeper depths of 125 nm than the initial end of range of 70 nm.

Last modified: 2019-12-10 19:20:09