Relationship between extensive and persistent extreme cold events in China and stratospheric circulation anomalies
Journal: Satellite Oceanography and Meteorology (Vol.1, No. 1)Publication Date: 2016-12-31
Authors : Hui Yang Xinrong Chen Gui-Ying Yang;
Page : 68-82
Keywords : satellite remote sensing; OLR; extreme cold event; stratosphere; troposphere;
Abstract
This study examines the relationship between the extensive and persistent extreme cold events (EPECEs) in China and geopotential height anomalies in the stratosphere using daily mean fields of outgoing long wave radiation (OLR) produced by the NCAR and daily atmospheric circulations produced by the NCEP/NCAR. The OLR composite analysis for the EPECE in China demonstrates that the negative OLR height anomalies (cold air) originated from Siberia influence China progressively from north to south. The largest negative OLR height anomaly (cooling event) occurs in the region to the north of the Nanling Mountains. This suggests that the OLR height anomalies can be used to represent the temporal and spatial characteristics of extreme low temperatures and cold air activities in winter in China. The composite analysis of large-scale atmospheric circulations during the EPECE reveals characteristic evolutions of stratospheric and tropospheric circulations during the extreme cold event. We demonstrate the important role of atmospheric circulation anomalies in the outbreak and dissipation of the EPECE in China. We also demonstrate that significant perturbations in the stratospheric circulation occur more than 10 days prior to the outbreak of the EPECE, with positive height anomalies in the Arctic stratosphere. These positive anomalies propagate downward from the stratosphere and affect the formation and development of the high pressure ridge in the middle troposphere over the Ural Mountains. Significant changes also occur in the atmospheric circulation in the mid-latitude stratosphere. These changes propagate downward from the stratosphere and strengthen the low pressure trough in the troposphere in the region to the east of Lake Balkhash and Lake Baikal. Therefore, the changes in the stratospheric circulation during the EPECE in China occur prior to changes in the tropospheric circulation and are very useful for predicting extreme wintertime cold temperatures in China.
Other Latest Articles
- Examination of interannual variability of sea surface temperature in the Indian Ocean using the physical decomposition method
- Water clarity patterns in South Florida coastal waters and their linkages to synoptic-scale wind forcing
- Role of barrier layer in the developing phase of “Category 6” super typhoon Haiyan
- Sea surface salinity observed from the HY-2A satellite
- Application of multi-window maximum cross-correlation to the mediterranean sea circulation by using MODIS data
Last modified: 2020-03-11 18:56:37