PERFORMANCE COMPARISON BETWEEN PATTERN GROWTH ALGORITHMS FOR MINING SEQUENTIAL PATTERN
Journal: SCHOLARLY RESEARCH JOURNAL FOR INTERDISCIPLINARY STUDIES (Vol.2, No. 13)Publication Date: 2014-09-04
Authors : Prachi Batwara; Basant Verma;
Page : 1685-1692
Keywords : http://www.srjis.com/srjis_new/images/articles/July-August2014/16%20Prachi%20Batwara.pdf;
Abstract
Sequential Pattern Mining is very important concept in Data Mining, finds frequent patterns from given sequence. It is used in various domains such as medical treatments, customer shopping sequence, DNA sequence and gene structures. Sequential Pattern Mining Approaches are classified into two categories: Apriori or generate and test approach, pattern growth or divide and conquer approach. In this paper, we are introducing a more efficient algorithm for sequential pattern mining. The time & space consumption of proposed algorithm will be lesser in comparison to previous algorithms & we compare two algorithms of pattern growth algorithms of Sequential Pattern Mining, one is P-prefix span which discovers frequent sequential pattern with probability of inter arrival time and other one is new proposed algorithm named as Percussive algorithm. Our experiment shows that new proposed algorithm is more efficient and scalable then the P-prefix span algorithm. Keywords: Data Mining, Sequential Pattern Mining, Frequent Item set, Support count, Sequence database.
Other Latest Articles
- A STUDY ON WAREHOSUING AGENCIES IN INDIA
- THE PROBLEM OF MARRIAGE AND FAMILY
- LIVING STANDARDS OF POPULATION OF THE REGION
- PROSPECTS OF LEGAL STATUS CONSOLIDATION OF THE INVESTIGATING MAGISTRATE IN JUDICIARY SYSTEM OF THE REPUBLIC OF KAZAKHSTAN
- LEGAL PAYMENT OF CHANGE OF PERMITTED USE OF LAND PROPERTY AS THE ANTI-CORRUPTION INSTRUMENT OF URBAN DEVELOPMENT
Last modified: 2014-09-17 21:01:01