ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

DESIGN, FABRICATION, AND TESTING OF A MOVABLE SOLAR OPERATED SPRAYER FOR FARMING OPERATION

Journal: International Journal of Mechanical Engineering and Technology(IJMET) (Vol.11, No. 3)

Publication Date:

Authors : ; ;

Page : 6-14

Keywords : Power conversion efficiency; Backup time of spray; Discharge & Application rate.;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Famers do spray seeds, fertilizers, pesticides, herbicides, etc. to protect crops from different insects, pests, diseases and have good harvests. Hand and fuel operated spray pumps are the most common sprayer used in Nigeria. The sprayer causes user fatigue due to excessive bulky and heavy construction, a user can't use it for more than five (5) hours without getting tired, the fuel sprayer is expensive to maintain, emits carbon dioxide and harmful to our environment. In this study, a movable solar operated sprayer for the farming operation was designed and fabricated to overcome these difficulties. The system operates in both direct mode and indirect mode. In the direct mode, the prayer is operated from the electricity generated by 50W solar panel mounted on a movable frame and in the indirect mode it is operated on stored electrical energy in the lead-acid DC battery (12 V, 12 Ah). Priming diaphragm pump of 10W or mini DC reciprocating cycle motor of 5W is used to generate the required operating pressure to spray the liquid pesticide formulations. The capacity of the storage tank is 20 liters for uninterrupted operation of 25.1 minutes with the discharge rate of 0.79 L/min through the electric flexible mists high-pressure multiple sprayers with four (4) nozzles. Data generated from the theoretical formulae were used to fabricate the system using locally available and durable materials. The sprayer was tested in farmland on two different crops after charging the battery for 3 hours in sunlight. The results obtained were as follows: Power conversion efficiency 20.4%, the time required to charge the battery 2.88hrs, time taken to spray 1 acre of land 2.13hrs, backup time of spray 14.5hrs, application rate 0.04 ????/????2 and operating time of the battery 8hrs. The results obtained show that solar sprayer was effective and will be useful in rural areas where there is no constant power supply. The system is incorporated with an energy bulb and charging kit to light up the farmyard and for the operator to charge his/her phone

Last modified: 2020-04-10 20:06:57