ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

An Efficient Computer-Aided Diagnosis System for the Analysis of DICOM Volumetric Images

Journal: Mehran University Research Journal of Engineering and Technology (Vol.38, No. 3)

Publication Date:

Authors : ; ; ; ;

Page : 835-850

Keywords : Magnetic Resonance Imaging; Support Vector Machine Classifier; Bags of Visual Words; Computer Aided Diagnosis System; Digital Imaging and Communications in Medicine Volumetric Images; 2D and 3D Images;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Medical images are an important source of diagnosis. The brain of human analysis is now an advanced field of research for computer scientists and biomedical physicians. Services provided by the healthcare units usually vary, the quality of treatment provided in the urban and rural generally not same. Unavailability of medical equipment and services can have serious consequences in patient disease diagnosis and treatment. In this context, we developed. MRI (Magnetic Resonance Imaging) based CAD (Computer Aided Diagnosis) system which takes MRI as input and detects abnormal tissues (Tumors). MRI is the safe and well reputed imaging methodology for prediction of tumors. MRI modality assists the medical team in diagnosis and proper treatment plan (Medication/Surgery) of different types of abnormalities in the soft tissues of the human body. This paper proposes a framework for brain cancer detection and classification. The tumor is segmented using a semi-automatic segmentation algorithm in which the threshold values selection for head and cancer regions are premeditated automatically. Segmented tumors are further sectioned into malignant and benign using SVM (Support Vector Machine) classifier. Detailed experimental work indicates that our proposed CAD system achieves higher accuracy for the analysis of brain MRI analysis.

Last modified: 2020-04-12 02:02:33