ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Analysis of acoustic anisotropy parameters of pyroxene-magnetite rocks of the Pischanka structure

Journal: Visnyk of Taras Shevchenko National University of Kyiv. Geology (Vol.88, No. 1)

Publication Date:

Authors : ; ; ;

Page : 40-45

Keywords : acoustic anisotropy; texture; symmetry; tensor;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

The analysis of the results of acoustic properties of rocks study of Pischans`ka iron-ore structure is presented. The aim of the work is to establish the features of the distribution of acoustic properties and parameters of acoustic anisotropy in samples of core rocks selected from the well No. 3 of the Pischans`ka structure to determine the nature of its occurrence. A sample of 35 samples from the depth range 144-273 m is divided into 3 groups of rocks, namely: magnetite-pyroxene, quartz-magnetitepyroxene and biotite-amphibole crystalline shales. Based on an invariant polarization method, a number of acoustic laboratory measurements have been carried out. The values of the measured phase velocities "quasi-longitudinal" and two "quasi-transverse" waves at the stage of measurements showed significant acoustic anisotropy of the rocks. The ranges of the measured speeds of the collection samples are 7661 ÷ 5046 m / s for longitudinal waves and 4232 ÷ 2648 m/s for transverse ones. The difference in values measured for each of the sides of the cubic rhombic dodecahedron is from 100 to 800 m / s and from 0 to 500 m/s for Vp and Vs, respectively. The parameters of an acoustic ellipsoid were calculated, on the basis of which the division of samples into 3 main groups has been performed, according to the acoustic texture: acoustically linear, shale and rhombic. Separately, a group of samples with a more complex texture was discovered. The analysis of coefficients of anisotropy by different methods is carried out: longitudinal, transverse and relative acoustic anisotropy. Most of the samples are characterized by low or average acoustic anisotropy (from 2 to 7 %). A group of highly anisotropic rocks (11–14 %), represented by samples of biotite-amphibole crystalline silicates, is singled out. According to the parameters of the acoustic tensor of most samples, the transverse isotropic type of symmetry inherent to samples from the depth intervals 174–220 m and 222–232 m, while the smaller part is rhombic, is inherent. Differences in the parameters of anisotropy of samples can be explained by the significant heterogeneity of their textures, namely: micro cracks, minerals of various sizes, shapes and orientations. The results of the research show that the acoustic properties of the samples are quite heterogeneously distributed along the investigated depth range. This indicates the difficult conditions for the formation of rocks at different depths and the presence of different types of deformations, which accompanied the formation of the Pischans`ka structure.

Last modified: 2020-05-12 21:50:40