ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

DIABETES-POST-TRANSLATIONAL PROTEIN MODIFICATION FOR DEVELOPMENT OF NEW DRUGS

Journal: Indian Drugs (Vol.51, No. 9)

Publication Date:

Authors : ; ;

Page : 5-11

Keywords : *Email: maushmiskumar@gmail.com;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Diabetes is a disorder associated with improper use of glucose by the body leading to increased level of glucose in the blood stream. Beta cells in the pancreas produce the hormone insulin, which is responsible for the movement of glucose into cells where it is utilized to produce energy. Due to the shortage of insulin in diabetic condition, the level of glucose in the bloodstream increases. The level of glucose within cells fall and thus the cells are not able to produce energy using glucose. It also gives rise to various other complications such as blindness, kidney failure, numbness in toes, delayed wound healing, cardiovascular complications, weight gain, loss of consciousness, disorientation etc. which in itself may be dangerous. The root cause of diabetes may either be lack of insulin being produced by the pancreas or development of resistance towards insulin leading to no effect of insulin on the glucose level. Post-translational modifications of protein control various biological processes. It is also considered as an important process in the pathogenesis of diabetes mellitus.In the current review, we will discuss the recent developments in post translational modification of genes associated with diabetes as well as epigenetic modification and metabolic memory that maybe responsible for the onset of diabetes and its associated complications. Currently research is being conducted on high molecular weight adiponectin, peroxisome proliferator-activated receptors (PPARγ), epigenetic histone modifications and Calpain 10 (CAPN10 gene encoded) protein based upon the post translational modifications they undergo and how these modifications affect glucose level regulation. This review article aims at shedding light upon recent advances in biotechnology that are focussed on studying the nature of protein modifications that result in diabetes and finding ways to prevent these modifications or stimulate a new modification that may result in better control of the disease state if not a cure.

Last modified: 2020-06-15 19:05:54