Optimization of Maximum Power Point Tracking Flower Pollination Algorithm for a Standalone Solar Photovoltaic System
Journal: Mehran University Research Journal of Engineering and Technology (Vol.39, No. 2)Publication Date: 2020-04-01
Authors : Muhammad Mateen Afzal Awan; Tahir Mahmood;
Page : 267-278
Keywords : Maximum Power Point Tracking; Global Maximum Power Point; Partial Shading Condition; Solar Photovoltaic.;
Abstract
Modern-day world is facing problems such as, electricity generation deficiency, mounting energy demand, GHG (Greenhouse Gas) emissions, reliability and soaring prices. To resolve these issues, sustainable and renewable energy resources like SPV (Solar Photovoltaic) would be quite helpful. In this regard, the extraction of maximum power from SPV array in PSC (Partial Shading Weather Conditions) remains a challenge. Creation of multiple power peaks in the P-V (Power-Voltage) curve of a PV array due to partial shading, makes it difficult to track GMPP (Global Maximum Power Point) out of multiple power peaks known as LMPP (Local Maximum Power Points). Conventional algorithms are not able to perform in any condition other than UWC (Uniform Weather Condition). Nature inspired SC (Soft Computing) algorithms efficiently track the GMPP in PSC. The top performing SC algorithm named, FPA (Flower Pollination Algorithm) presents an efficient solution for GMPP tracking in PSCs. In this paper, the efficiency, accuracy and tracking speed of FPA algorithm is optimized. Comparison of the proposed OFPA (Optimized Flower Pollination Algorithm) and the existing FPAs is performed for zero shading condition, weak PSC, strong PSC, and changing weather conditions. In zero shading conditions, improvement of 0.7% in efficiency and 33% in tracking speed is achieved. In weak shading conditions, improvement of 0.97% in efficiency and 32.2% in tracking speed is achieved. In strong shading conditions, improvement of 0.24% in efficiency and 30.6% in tracking speed is achieved. OFPA is also tested for changing weather conditions (entering from Case-1 to Cae-3) and it retains its outstanding performance in the changing weather conditions. Simulations are performed in MATLAB/Simulink.
Other Latest Articles
- Power Flow Control by Unified Power Flow Controller
- An SVC controller for Power Quality Improvement of a Heavily Loaded Grid
- Development of a Prototype Uninterrupted Electrical Power Supply System using Compressed Air Storage from Renewable Energy Resources
- The Plant Propagation Algorithm for the Optimal Operation of Directional Over-Current Relays in Electrical Engineering
- An Efficient Topic Modeling Approach for Text Mining and Information Retrieval through K-means Clustering
Last modified: 2020-07-29 01:17:59