ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

ABSORPTION CHARACTERISTICS OF SILVER ION-EXCHANGED LAYERS IN CHLORIDE PHOTO-THERMO-REFRACTIVE GLASS

Journal: Scientific and Technical Journal of Information Technologies, Mechanics and Optics (Vol.20, No. 4)

Publication Date:

Authors : ;

Page : 515-519

Keywords : low-temperature ion exchange; photo-thermo-refractive glass; silver nanoparticles; chloride;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Subject of Research. The paper considers effect of chloride in composition of photo-thermo-refractive glass on the spectral properties of silver nanoparticles formed in ion-exchanged layers after heat treatment. Method. Glasses based on Na2O–ZnO–Al2O3–SiO2–F doped with antimony oxide Sb2O3, cerium oxide CeО2 and a variable chloride content (0–1 mol%) were synthesized for the study. Silver ions were introduced by the low-temperature Na+–Ag+ ion exchange method into the synthesized glasses. For this purpose, glass samples were immersed in a mixture of 0.1AgNO3/99.9NaNO3 (mol%) nitrates at the temperature of 320 °С for 15 minutes. After the ion exchange glasses were irradiated with ultraviolet radiation and heat-treated at the temperature of 500 °C for 3 hours to achieve the growth of silver nanoparticles. Main Results. Spectrum properties of chloride photo-thermo-refractive glasses with silver nanoparticles in ion-exchanged layers are studied. It is found that the presence of chloride in the photo-thermo-refractive glass matrix results in a long-wavelength shift of the absorption band of silver nanoparticles. That may be attributed to the growth of the mixed AgCl/NaCl shell on silver nanoparticles. The formation of silver nanoparticles in ion-exchanged layers occurs both in the irradiated and unirradiated regions of the glass. Practical Relevance. The results can be used to create Bragg gratings inside photo-thermo-refractive glass for input and output radiation (pump and signal) into the waveguide structures formed by the ion exchange method, and to create monolithic integrated optical elements on a single substrate, that is very essential for integrated optics.

Last modified: 2020-08-26 03:05:47