ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Modeling the set of blade profiles of a gas turbine engine

Journal: RUDN Journal of Engineering Researches (Vol.20, No. 2)

Publication Date:

Authors : ; ; ;

Page : 140-146

Keywords : gas turbine; profile C8626; approximation by Bezier curves; profile grid;

Source : Download Find it from : Google Scholarexternal

Abstract

In the development of gas turbine engines (GTE) it is necessary to simulate the flow section of blade machines (turbines, compressors). At the same time, it is rational to use previously designed profiles and set of profiles with high aerodynamic and efficient performance. This is due to the fact that the process of creating profiles of a nozzle and moving blades set requires the participation of a large team and considerable labor and time costs. Many sets were created for the graphic-analytical design method, which leads to an increase in the development time and a decrease in the universality in terms of the use of programming languages and digital technologies. The article presents the design scheme of the nozzle profile sets of type С8626, the main fragments of the mathematical model of the sets, the results of the design of the original profile С8626 and the sets, comparison of the geometric parameters of the source and built profiles. The contours of the initial profile are approximated by second-order Bezier curves, and the leading and trailing edges are circular arcs. The coordinates of the points of conjugation of the circles of the leading and trailing edges with convex (suction side) and concave (pressure side) profile surfaces are determined. After approximation of the contours of the initial profile, an integral system of equations of the original C8626 turbine profile was obtained. The proposed mathematical model can be considered as independent, it can be a subsystem (software module) of CAD, to represent the shearer of the electronic atlas of profiles and etc.

Last modified: 2020-09-21 07:47:02