Human Scalp Hair as Fiber Reinforcement in Cement Concrete
Journal: Mehran University Research Journal of Engineering and Technology (Vol.39, No. 2)Publication Date: 2020-04-01
Authors : Shanker Lal Meghwar; Ghous Bux Khaskheli; Aneel Kumar;
Page : 443-452
Keywords : Fiber Reinforced Concrete; Human Scalp Hair; Municipal Solid Waste; Recycling of Waste; Environmental Friendly; Mechanical Properties of Concrete.;
Abstract
The construction industry is the largest manufacturing industry, which produces concrete and other related materials for construction of infrastructure around the world, after the food production industry. This industry requires a lot of natural resources like aggregates, limestone etc. to produce finished product such as concrete and cement. These natural resources are limited and have to deplete one day, so alternate to these resources are required. On the other hand, this industry produces a large amount of waste material that creates environmental pollution. Thus, recycling the waste as potential raw material and to produce a usable product is the need of present era for sustainable construction. This study presents the quantitative analysis of HSH (Human Scalp Hair) as fibers in cement concrete. This study aims to investigate the behaviour of concrete in terms of their mechanical properties when HSH are used as fibers. A detailed investigation on two types of concrete specimens i.e. cylindrical (150 mm diameter and 300 mm height) and prism (150 mm depth, width and 600 mm length) made with a different proportion of HSH as fibers and concrete mix ratios, was carried out. In this study, various proportions of HSH added in concrete that includes 0%, 1%, 2% and 3% by weight of OPC (Ordinary Portland Cement). All specimens were cast at two concrete mix ratios i.e. 1:2:4 and 1:1.5:3 with 0.50 W/C (Water-Cement Ratio). Moreover, specimens were tested in UTM (Universal Testing Machine) at 28 days curing age, for splitting tensile strength and flexural strength of concrete. It was observed from the experimental analysis that there is an improvement in mechanical properties of concrete at specific percentage of HSH and reduction of workability and density with increasing percentages of HSH.
Other Latest Articles
- Simulation Study to Evaluate the Impact of Fracture Parameters on Shale Gas Productivity
- A Study of Software Development Cost Estimation Techniques and Models
- Laboratory Analysis of Foam Generating Surfactants and Their Thermal Stability for Enhanced Oil Recovery Application
- Estimating Sectoral Water Demand for Sindh Province of Pakistan
- Coral Community: Preliminary Biodiversity Survey of Churna Island, Northern Arabian Sea
Last modified: 2020-10-04 19:02:19