ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

STUDENT ACADEMIC PERFORMANCE USING DATA MINING TECHNIQUES

Journal: International Journal of Computer Science and Mobile Computing - IJCSMC (Vol.3, No. 10)

Publication Date:

Authors : ; ;

Page : 726-731

Keywords : data mining; methodology; data mining techniques; machine learning process;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Data and Information or Knowledge has a significant role on human activities. Data mining is the knowledge discovery process by analyzing the large volumes of data from various perspectives and summarizing it into useful information. Assessment as a dynamic process produces data that reasonable conclusions are derived by stakeholders for decision making that expectedly impact on students' learning outcomes. The data mining methodology while extracting useful, valid patterns from higher education database environment contribute to proactively ensuring students maximize their academic output. This paper develops a methodology by the derivation of performance prediction indicators to deploying a simple student performance assessment and monitoring system within a teaching and learning environment by mainly focusing on performance monitoring of students' continuous assessment (tests) and examination scores in order to predict their final achievement status upon graduation. Based on various data mining techniques (DMT) and the application of machine learning processes.

Last modified: 2014-10-28 22:13:09