Detection of Phishing Websites using Machine Learning
Journal: International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) (Vol.10, No. 3)Publication Date: 2020-06-30
Authors : Shwetha; Kavitha S.N;
Page : 6785-6792
Keywords : Phishing Detection; Feature Extraction; Phishing Website; Phishing Attacks;
Abstract
Trying to access personal information nowadays has become more common. Phishing is an attack where the hackers take advantage of the trust factor of the target and try to gather sensitive information of a target such as a username, password, etc. by disguising as a trustworthy entity. There are many anti-phishing methods such as blacklist, heuristic, visual similarity and, machine learning. The blacklist method is widely used because it is easy to use and execute, but it fails to detect new phishing attacks. This paper proposes a methodology of phishing identification framework where various machine learning algorithms like random forest, support vector machine, logistic regression are used for the comparison conciseness to predict more accuracy. It also includes data analysis, data visualization, and, detecting the phishing website. After detailed research, we proposed a framework that overcomes the disadvantages of other approaches.
Other Latest Articles
- Seismic Behaviour of Flat Slabs in Multi-Storey Buildings
- Indigenous Development of Sesame Seed Harvesting Machine
- Customer Awareness towards E Banking Services in India- A comparative Study of Public and Private Sector Banks
- Corporate Image Building through HR Practices: A Comparative Study on IT Companies in India
- Design and Analysis of Loader Attachment of 13 Tonne Excavator for Tunneling
Last modified: 2020-12-02 13:19:54