METHOD OF JOINT CLUSTERING IN NETWORK AND CORRELATION SPACES
Journal: Scientific and Technical Journal of Information Technologies, Mechanics and Optics (Vol.20, No. 6)Publication Date: 2020-12-03
Authors : Gainullina A.N. Artyomov M. Sergushichev A.A.;
Page : 807-814
Keywords : clustering; correlation; graphs; metabolic networks; gene expression; transcriptomic data;
Abstract
Subject of Research. The joint clustering method in network and correlation context is designed to identify active modules in metabolic graphs based on transcriptomic data represented by a large number of samples. The active modules obtained by this method describe the dynamic metabolic regulation in all samples of the analyzed dataset. The paper presents modifications of the proposed method for application on real data. Method. For results stability study the modified method was repeatedly run on real data with small variations of the initial parameters. For result analysis, several metrics were formulated that display modules similarity and representation under various start-up conditions. Main Results. The analysis results are sufficiently robust. For the most modules, their profiles are detected well in the noisy data, and the most genes are also preserved. Practical Relevance. The results of the presented study have shown that the modified method analyzes successfully real data by producing active modules that are stable and easy in interpretation.
Other Latest Articles
- FAST MOTION ESTIMATION ALGORITHM FOR HEVC VIDEO CODEC
- EFFECT OF PLANT EXTRACTS ON ACTIVITY OF STAPHYLOCOCCUS AUREUS BY ELECTROCHEMICAL BIOTESTING
- APPLICATION FEATURES OF OPTICAL POLYMERS IN OPTICAL SYSTEMS DESIGN
- SENSITIVITY VARIATION RESEARCH OF TILTED FIBER BRAGG GRATING DURING CHEMICAL ETCHING
- APPLICATION OF INDUCED MECHANICAL STRESSES IN FORMATION OF SPHERICAL SURFACES OF INTERFERENCE MIRROR SUBSTRATES
Last modified: 2020-12-05 01:07:56