Single-mode propagation of adiabatic guided modes in smoothly irregular integral optical waveguides
Journal: Discrete and Continuous Models and Applied Computational Science (Vol.28, No. 4)Publication Date: 2020-12-10
Authors : Anton Sevastianov;
Page : 361-377
Keywords : waveguide propagation of polarized light; integral optical waveguide; adiabatic approximation; eigenvalues and eigenfunctions; Kantorovich method; single-mode regime;
Abstract
This paper investigates the waveguide propagation of polarized electromagnetic radiation in a thin-film integral optical waveguide. To describe this propagation, the adiabatic approximation of solutions of Maxwell’s equations is used. The construction of a reduced model for adiabatic waveguide modes that retains all the properties of the corresponding approximate solutions of the Maxwell system of equations was carried out by the author in a previous publication in DCM & ACS, 2020, No 3. In this work, for a special case when the geometry of the waveguide and the electromagnetic field are invariant in the transverse direction. In this case, there are separate nontrivial TEand TM-polarized solutions of this reduced model. The paper describes the parametrically dependent on longitudinal coordinates solutions of problems for eigenvalues and eigenfunctions - adiabatic waveguide TE and TM polarizations. In this work, we present a statement of the problem of finding solutions to the model of adiabatic waveguide modes that describe the stationary propagation of electromagnetic radiation. The paper presents solutions for the single-mode propagation of TE and TM polarized adiabatic waveguide waves.
Other Latest Articles
- On methods of quantitative analysis of the company’s financial indicators under conditions of high risk of investments
- On the realization of explicit Runge-Kutta schemes preserving quadratic invariants of dynamical systems
- Stochastic analysis of a single server unreliable queue with balking and general retrial time
- Queueing systems with different types of renovation mechanism and thresholds as the mathematical models of active queue management mechanism
- EXPLORATIVE STUDY ON THE BEHAVIOR OF POCA PARTICIPANTS IN THEORETICAL PERSPECTIVE
Last modified: 2020-12-10 07:28:40