MACHINE LEARNING CLASSIFICATION OF STARS, GALAXIES, AND QUASARS
Journal: MATTER: International Journal of Science and Technology (Vol.6, No. 3)Publication Date: 2020-11-12
Authors : Yulun Winston Wu;
Page : 102-122
Keywords : Logistic Regression; Decision Tree; Stars; Galaxies; Quasars; Classification;
Abstract
The objective of this study was to create a predictive model to classify stars, galaxies, and quasars, along with comparing different classification models to find the superior one. I hypothesized that it was possible to successfully train a machine learning model to classify stars, galaxies, and quasars using astronomical data provided by the Sloan Digital Sky Survey (SDSS). A multinomial logistic regression model has been trained and tested. It had an accuracy of 0.87, a weighted average precision, recall, and an f-1 score of 0.87, and a cross-validation accuracy score of 0.8664. The next model, a decision tree, had an accuracy of 0.99, weighted average precision, recall, and an f-1 score of 0.99, a cross-validation accuracy score of 0.99, and a cross-validation accuracy score of 0.9858. The decision tree model had significantly superior performance compared to the logistic regression model and was a good fit and accurate classifier for stars, galaxies, and quasars, proving my hypothesis to be correct. The model from this study could be used as a reliable classification tool for a wide variety of astronomical purposes to accelerate the expansion of the sample sizes of stars, galaxies, and especially quasars.
Other Latest Articles
- ECONOMIC TRANSFORMATION OF GUJJAR TRIBE IN SAAL VALLEY OF CHAMBA DISTRICT, HIMACHAL PRADESH
- Experience of Ultrasonic Use to Stabilize Archaeological Iron Artifacts with Active Corrosion
- The Fragment of Enameled Glass Vessel from the Bolgar Excavation (Russia)
- Yarkovskoe 1 hillfort – monument of the XII–XIV centuries in the Tobolsk Irtysh River region
- PERCEPTION OF INDIAN CITIZENS ON THE CONCEPT OF CITIZENSHIP AMENDMENT ACT
Last modified: 2021-01-05 19:50:34