Antimicrobial activity of mono- and polynuclear platinum and palladium complexes
Journal: "Foods and Raw materials" Journal (Vol.8, No. 2)Publication Date: 2020-09-28
Authors : Olesya V. Salishcheva; Alexander Yu. Prosekov;
Page : 298-311
Keywords : Antimicrobial activity; antibacterial activity; antitumor activity; mononuclear complexes; polynuclear complexes; platinum (II); palladium (II); platinum (IV);
Abstract
Introduction. Infectious diseases remain a serious threat to humanity worldwide as bacterial pathogens grow more diverse. Bacteria, fungi, and parasites develop resistance to clinically approved antimicrobials, which reduces the efficacy of available drugs and treatment measures. As a result, there is an ever growing demand for new highly effective pharmaceuticals. This review describes mono- and polynuclear platinum and palladium complexes with antimicrobial properties. We compared several groups of antibacterial agents: antibiotics, antioxidant biologically active substances, antimicrobial nanoparticles, nanocomposite materials, biopolymers, micellar systems, and plant extracts. Study objects and methods. The review covered relevant articles published in Web of Science, Scopus, and Russian Science Citation Index for the last decade. The list of descriptors included such terms as mononuclear and binuclear complexes of platinum, palladium, and antimicrobial activity. Results and discussion. Chelates of platinum, palladium, silver, iridium, rhodium, ruthenium, cobalt, and nickel are popular therapeutic agents. Their antimicrobial activity against pathogenic microorganisms can be enhanced by increasing their bioavailability. Metalbased drugs facilitate the transport of organic ligands towards the bacterial cell. The nature of the ligand and its coordination change the thermodynamic stability, kinetic lability, and lipophilic properties of the complex, as well as the reactivity of the central atom. Polynuclear platinum and palladium complexes contain two or more bound metal (coordinate) centers. Covalent bonding with bacterial DNA enables them to form a type of DNA adducts, which is completely different from that of mononuclear complexes. Conclusion. Metal-based drugs with functional monodentate ligands exhibit a greater antimicrobial effect compared to free ligands. Poly- and heteronuclear complexes can increase the number of active centers that block the action of bacterial cells. When combined with other antibacterial agents, they provide a synergistic effect, which makes them a promising subject of further research.
Other Latest Articles
- Kashk with caper (Capparis spinosa L.) extract: quality during storage
- Antioxidant and anti-diabetic activity of pomegranate (Punica granatum L.) leaves extracts
- Assessing protopectin transformation potential of plant tissue using a zoned criterion space
- Panax ginseng callus, suspension, and root cultures: extraction and qualitative analysis
- Yeast-rich mannan fractions in duck cultivation: prospects of using
Last modified: 2021-01-25 20:53:29