Using Decision Tree and Random Forests to Classify Land Coverage in Tomine Reservoir
Journal: International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) (Vol.10, No. 5)Publication Date: 2020-10-31
Authors : Yenny Espinosa Gómez. Javier Felipe Moncada Sánchez.; Orlando García Hurtado;
Page : 21-34
Keywords : : Thematic information extraction; Supervised classification; Decision Tree (DT); Random Forests (RF); Land Cover; Satellite Image; Thematic accuracy;
Abstract
Traditional methods of cover classification should be reviewed and compared against the recent methods proposed for this purpose, so the purpose of this study was to extract thematic information from a Landsat 5 TM satellite image of Tominé Reservoir, and around using two methods of classification and / or regression: Decision Tree (DT) and Random Forests (RF) that were processed and applied to the statistical software R. Levels of thematic accuracy were obtained for each these methods and the comparison was made between them, leading to the conclusion that for the study area, the Random Forests can provide a better extraction of thematic information of land cover which is seen in the values obtained and the results visually, although the classification obtained with Decision Trees is also good.
Other Latest Articles
- Marine Ecotourism As Destination Branding Management toward Slogan “Krabi Your Amaze”
- Smart Hybrid Energy Meter and Utilization
- Overview of the Determination of Hydrochlorothiazide Levels in Pharmaceutical Preparations and Biological Matrices
- Overview of Traditional Use, Phytochemical and Pharmacological Activities of Cucumber (Cucumis sativus L.)
- Preparation and Evaluation of Biodegradable Ocular Inserts of Timolol Maleate
Last modified: 2021-03-18 21:05:17