ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Geometrically nonlinear analysis of the stability of the stiffened plate taking into account the interaction of eigenforms of buckling

Journal: Structural Mechanics of Engineering Constructions and Buildings (Vol.17, No. 1)

Publication Date:

Authors : ; ; ;

Page : 3-18

Keywords : geometrically nonlinear equilibrium equations; bifurcation points; limit points; interaction of forms; reinforced plate; critical stresses;

Source : Download Find it from : Google Scholarexternal

Abstract

The aims of this work are a detailed consideration in a geometrically nonlinear formulation of the stages of the equilibrium behavior of a compressed stiffened plate, taking into account the interaction of the general form of buckling and local forms of wave formation in the plate or in the reinforcing ribs, comparison of the results of the semi-analytical solution of the system of nonlinear equations with the results of the numerical solution on the Patran-Nastran FEM complex of the problem of subcritical and postcritical equilibrium of a compressed stiffened plate. Methods. Geometrically-nonlinear analysis of displacement fields, deformations and stresses, calculation of eigenforms of buckling and construction of bifurcation solutions and solutions for equilibrium curves with limit points depending on the initial imperfections. An original method is proposed for determining critical states and obtaining bilateral estimates of critical loads at limiting points. Results. An algorithm for studying the equilibrium states of a stiffened plate near critical points is described in detail and illustrated by examples, using the first nonlinear (cubic terms) terms of the potential energy expansion, the coordinates of bifurcation points and limit points, as well as the corresponding values of critical loads. The curves of the critical load sensitivity are plotted depending on the value of the initial imperfections of the total deflection. Equilibrium curves with characteristic bifurcation points of local wave formation are constructed using a numerical solution. For the case of action of two initial imperfections, an algorithm is proposed for obtaining two-sided estimates of critical loads at limiting points.

Last modified: 2021-04-03 02:56:18