ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Execution Assessment of Machine Learning Algorithms for Spam Profile Detection on Instagram

Journal: International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE) (Vol.10, No. 3)

Publication Date:

Authors : ;

Page : 1889-1894

Keywords : ;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Witheverypassingsecondsocialnetworkcommunityisgrowingrapidly,becauseofthat,attackershaveshownkeeninterestinthesekindsofplatformsandwanttodistributemischievouscontentsontheseplatforms.Withthefocus on introducing new set of characteristics and features forcounteractivemeasures,agreatdealofstudieshasresearchedthe possibility of lessening the malicious activities on social medianetworks. This research was to highlight features for identifyingspammers on Instagram and additional features were presentedto improve the performance of different machine learning algorithms. Performance of different machine learning algorithmsnamely, Multilayer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)were evaluated on machine learning tools named, RapidMinerand WEKA. The results from this research tells us that RandomForest (RF) outperformed all other selected machine learningalgorithmsonbothselectedmachinelearningtools.OverallRandom Forest (RF) provided best results on RapidMiner. Theseresultsareusefulfortheresearcherswhoarekeentobuildmachine learning models to find out the spamming activities onsocialnetworkcommunities.

Last modified: 2021-06-11 20:31:21