Differential Equations Which are Substitutable to Bessel Differential Equation
Journal: International Journal of Science and Research (IJSR) (Vol.8, No. 8)Publication Date: 2019-08-05
Authors : Mohammad Nasim Naimy;
Page : 448-452
Keywords : Bessel equation; Bessel functions of the first and second kind; differential equations of the second-order; differential equations of the second-order solution;
Abstract
Differential equations in which p is an integer is known as p order of Bessel equation. This differential equation is one of the most important differential equations in applied mathematics. The answers or solutions of this equation are known as Bessel equation. The first solution to this equation is: Which is called Bessel function of the first kind. If p is non-integer, the second solution to the above mentioned equation is: So, the general solution to the above equation is: However, if p is an integer, then the second solution with the first solution is not linearly independent but linearly dependent; thus, the second solution is determined by the following relation which is called Bessel function of the second-order. And with the first solution, it is linearly independent, so the general solution in both cases is: All the differential equation of the second-order that can be substituted into Bessel equation due to some appropriate replacements, we can easily find out their solution by Bessel equation.
Other Latest Articles
- The Impacts of Senior Secondary Schools? Quality and the Content Validity of Their Geography Tests Items
- Proximate Food Analysis on Moringa Oleifera Seeds
- Students Really Evaluate the Performance of the Teacher?
- Artificial Hand Using Embedded System
- Using the Lateral Vaginal Swabs for Determination of the Ovulation Status
Last modified: 2021-06-28 18:22:28