A Survey of Content Aware Video based Social Recommendation System
Journal: International Journal of Science and Research (IJSR) (Vol.4, No. 1)Publication Date: 2015-01-05
Authors : Pankaj Chaudhary; A. A. Deshmukh;
Page : 748-751
Keywords : Social Recommendation System SRSs; cold-start problem; social media sites; ratings; bi-clustering and fusion; rating matrix;
Abstract
Collaborative Filtering (CF) has achieved widespread success in recommender systems, which automatically aggregate and predict preferred products of a user using known preferences of other users from large scale SRSs. But on the other hand, a large portion of them cannot manage the cold-start issue that indicates a circumstance that social media sites neglect to draw suggestion for new things, users or both, hence accurate and scalable recommendations are difficult to generate. This supposition is against the way that low-level ratings help little to recommending things that are liable to be of enthusiasm of users. To this end, we propose a system using bi-clustering and fusion, a recently modeled scheme for the cold-start issue focused around the system procedures under a distributed computing setting. To lessen the dimensionality of the rating matrix, the system influences the bi-clustering method. To defeat the information exiguity and rating differences, it utilizes the smoothing and fusion strategy. At long last, the system proposes content aware video based social media substance from both thing and user bunches. Finally our experiments result will be shown that our method generates better recommendations.
Other Latest Articles
- Secure Spread Spectrum Data Embedding and Extraction
- Fresh Water Cyanophycean Algae from Yelderi Dam Parbhani District (M. S.), India
- Comparative Analysis of Privacy Preserving Techniques in Distributed Database
- Analysis of FFT Based Spectrum Detection Model using Modified Periodogram Algorithm
- Effective Method for Automatic Generation of Knowledge from Electronic Textbook
Last modified: 2021-06-30 21:20:16