Privacy-Preservation of Centralized and Distributed Social Network by Using L-Diversity Algorithm
Journal: International Journal of Science and Research (IJSR) (Vol.4, No. 3)Publication Date: 2015-03-05
Authors : Shankaranand; P. Rajasekar;
Page : 2441-2444
Keywords : Anonymization; Clustring; l-diversity; Social Network;
Abstract
Publishing data about individuals without revealing sensitive information about them is an important problem. In recent years, a new denition of privacy called k-anonymity has gained popularity. In a k-anonymized dataset, each record is indistinguishable from at least k1 other records with respect to certain identifying attributes. The problem of Social Network is getting secured data from unauthorized access of database. To consider the distributed configurations in which the network data is split between several data holders. The data is divided between a numbers of data holders. The plan is to get there at an anonymized view of the combined network without informative to any of the data holders. Two variants of an anonymization algorithm which is based in order clustering. High sensitive data has been secured in l-diversity algorithms. Based on the retrieval of data from the database, calculation of data loss has to be done. Also the analyzing of data that how secure the database and also by calculating the data loss. In addition to building a formal foundation for -diversity, we show in an experimental evaluation that -diversity is practical and can be implemented efciently.
Other Latest Articles
- Design and Determination of Feasible Centroid for Meeting from Multiple Geo-Points: A Review
- Semantic Information Extraction From Ontology Using Natural Language Query Processing
- Identify the Patients at High Risk of Re-admission in Hospital in the Next Year
- Cross Selling of Financial Products ? A Study Based on Customers in Kerala
- Secure Data Transmission with Hierarchical Clustering
Last modified: 2021-06-30 21:34:49