Detection of Malicious URLs using Classification Algorithm
Journal: International Journal of Science and Research (IJSR) (Vol.10, No. 6)Publication Date: 2021-06-05
Authors : Muskan V. Jaiswal; Anjali B. Raut;
Page : 863-865
Keywords : URL; malicious URL detection; feature extraction; feature selection; machine learning;
Abstract
Malicious URL, a.k.a. malicious website, is a common and serious threat to cyber security. Malicious URLs host unsolicited content (spam, phishing, drive-by downloads, etc.) and lure unsuspecting users to become victims of scams (monetary loss, theft of private information, and malware installation), and cause losses of billions of dollars every year. It is imperative to detect and act on such threats in a timely manner. Traditionally, this detection is done mostly through the usage of blacklists. However, blacklists cannot be exhaustive, and lack the ability to detect newly generated malicious URLs. To improve the generality of malicious URL detectors, machine learning techniques have been explored with increasing attention in recent years. This article aims to provide a comprehensive survey and a structural understanding of Malicious URL Detection techniques using machine learning. We present the formal formulation of Malicious URL Detection as a machine learning task, and categorize and review the contributions of literature studies that addresses different dimensions of this problem (feature representation, algorithm design, etc.). Further, this article provides a timely and comprehensive survey for a range of different audiences, not only for machine learning researchers and engineers in academia, but also for professionals and practitioners in cyber security industry, to help them understand the state of the art and facilitate their own research and practical applications. We also discuss practical issues in system design, open research challenges, and point out important directions for future research.
Other Latest Articles
- High-Temperature Superconductivity is the Quantum Leap in Electronics
- A Research Paper on Contribution of Spray Plaster Technology to Achieve the Project Specification by Cost
- The Administration of Zinc Inhibited the Decrease of Leydig Cell and Testosterone Level in Male Wistar Rats (Rattus Norvegicus) that are Exposed to Electric Cigarette Smoke
- Artificial Intelligence and Global Fashion Trends
- Profitability Analysis of Hindustan Petroleum Corporation Limited and Bharat Petroleum Corporation Limited
Last modified: 2021-07-05 13:46:22