Control Strategies For DFIG Based Wind Turbine Systems Frequency Regulating
Journal: International Journal of Advanced Networking and Applications (Vol.12, No. 06)Publication Date: 2021-06-28
Authors : Jamshed Ali Shaikh; Umer Farooq; Muhammad Shoaib Bhutta;
Page : 4732-4741
Keywords : DFIG; PI traditional controller; Droop control coefficient; Inertia control coefficient;
Abstract
As the energy crisis worsens and global problems intensify, wind power generation has emerged as one of the most successful and fastest-growing alternatives among some of the different mechanisms. The running of a power plant is continually jeopardized by irregular and malfunctioning circumstances. A conceptual implementation of an innovative solution is suggested for the proper output of a wind turbine power system in a wind-solar hybrid microgrid to track frequency fluctuations caused by various load factors and environmental conditions (MG). As a standard PI controller is used to track frequency, it is coupled with a sophisticated fuzzy logic controller to enhance frequency regulation. The frequency response properties of traditional WTs are tested and distinguished with varying loads and wind speeds. It is claimed that as the wind power speed rises, the power output of the device would deteriorate. The simulation shows that frequency modulation is accomplished in the time allocated. Furthermore, the proposed solution can be implemented into day-to-day applications without making any external modifications.
Other Latest Articles
Last modified: 2021-07-06 18:57:41