ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Shifted Sobol points and multigrid Monte Carlo simulation

Journal: Discrete and Continuous Models and Applied Computational Science (Vol.29, No. 3)

Publication Date:

Authors : ; ;

Page : 260-270

Keywords : multidimensional integral; Monte Carlo method; Sobol points; multigrid calculation; a posteriori error estimates;

Source : Download Find it from : Google Scholarexternal

Abstract

Multidimensional integrals arise in many problems of physics. For example, moments of the distribution function in the problems of transport of various particles (photons, neutrons, etc.) are 6-dimensional integrals. When calculating the coefficients of electrical conductivity and thermal conductivity, scattering integrals arise, the dimension of which is equal to 12. There are also problems with a significantly large number of variables. The Monte Carlo method is the most effective method for calculating integrals of such a high multiplicity. However, the efficiency of this method strongly depends on the choice of a sequence that simulates a set of random numbers. A large number of pseudo-random number generators are described in the literature. Their quality is checked using a battery of formal tests. However, the simplest visual analysis shows that passing such tests does not guarantee good uniformity of these sequences. The magic Sobol points are the most effective for calculating multidimensional integrals. In this paper, an improvement of these sequences is proposed: the shifted magic Sobol points that provide better uniformity of points distribution in a multidimensional cube. This significantly increases the cubature accuracy. A significant difficulty of the Monte Carlo method is a posteriori confirmation of the actual accuracy. In this paper, we propose a multigrid algorithm that allows one to find the grid value of the integral simultaneously with a statistically reliable accuracy estimate. Previously, such estimates were unknown. Calculations of representative test integrals with a high actual dimension up to 16 are carried out. The multidimensional Weierstrass function, which has no derivative at any point, is chosen as the integrand function. These calculations convincingly show the advantages of the proposed methods.

Last modified: 2021-10-01 08:20:52